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Fisher’s droplet model [1] has had sweeping success in de-
scribing nuclear multifragmentation yields and construction
of the nuclear liquid-vapour phase diagram [2]. However it
suffers from an inability to account for excluded volume ef-
fects in dense cluster environments. At high density, forma-
tion of clusters is obstructed by the presence of other clusters.
Such effects lead to strict cluster non-independence and fail-
ure of Fisher’s model in its original form.

We recently came up with a modification of the way
Fisher’s model is used to analyze gas properties in the two-
phase region combining ideas from Stillinger’s cluster model
[3] and the fact that the calculation of the internal energy of
the system does not depend on the assumption of an ideal gas
of clusters. Thus the internal energy of the system per unit
volume can be calculated from the cluster concentrations as
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where n
�
a � T � is the concentration of clusters of size a, sa is

their average surface, T � 1 � β is the temperature, and p is the
pressure.

According to Stillinger, formation of a cluster is hindered
by the presence of other clusters, which need to be pushed
aside to form a cavity. This requires additional work. Thus
the cluster concentrations should contain the cavity formation
probability, which is pressure (p) and density (ρ) dependent.
We can modify Fisher’s droplet concentrations at coexistence
to include excluded volume effects as follows:
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where c is the surface energy coefficient, and to the lowest
order the energy to form a cavity of volume v is
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which follows from the work of Reiss, Frisch, Lebowitz [4],
and Stillinger. Recalling the definition of the density, and
putting all the above ideas together, a system of equations can
be written
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which defines the properties of the two-phase region within
the validity of Eq. (3) and Fisher’s assumptions about sa

and g
�
sa � . The solution of Eqs. (4) with initial condition

p
�
T � 0 � � 0 can be combined with a χ2-minimization proce-

dure to analyze experimental cluster distributions and obtain
the phase diagram.

As a test we turned to a well-known model of phase transi-
tion that can generate cluster distributions at coexistence: the
zero-field two-dimensional Ising model. We used geometric
configurational clusters that are defined only by the nearest
neighbour condition. We fitted cluster concentrations from
a simulation using the above technique, and when the fitting
successfully converged we compared the pressure with the ex-
actly known result from the Onsager solution [5] using the
equivalence relations between the Ising model and the lattice
gas established by Lee and Yang [6] (see Fig. 1). The agree-
ment suggests that the method might be used to look for ex-
cluded volume effects in nuclear clusters, as well as provide an
alternative technique to verify the nuclear liquid-vapour phase
diagram. The work is underway. Details of the procedure will
appear in [7].

FIG. 1: The two-dimensional Ising pressure obtained from the anal-
ysis of geometric clusters as compared to the exact Onsager result.
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